Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(6): 1258-1270.e5, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401545

RESUMO

Vestigial organs provide a link between ancient and modern traits and therefore have great potential to resolve the phylogeny of contentious fossils that bear features not seen in extant species. Here we show that extant daddy-longlegs (Arachnida, Opiliones), a group once thought to possess only one pair of eyes, in fact additionally retain a pair of vestigial median eyes and a pair of vestigial lateral eyes. Neuroanatomical gene expression surveys of eye-patterning transcription factors, opsins, and other structural proteins in the daddy-longlegs Phalangium opilio show that the vestigial median and lateral eyes innervate regions of the brain positionally homologous to the median and lateral eye neuropils, respectively, of chelicerate groups like spiders and horseshoe crabs. Gene silencing of eyes absent shows that the vestigial eyes are under the control of the retinal determination gene network. Gene silencing of dachshund disrupts the lateral eyes, but not the median eyes, paralleling loss-of-function phenotypes in insect models. The existence of lateral eyes in extant daddy-longlegs bears upon the placement of the oldest harvestmen fossils, a putative stem group that possessed both a pair of median eyes and a pair of lateral eyes. Phylogenetic analysis of harvestman relationships with an updated understanding of lateral eye incidence resolved the four-eyed fossil group as a member of the extant daddy-longlegs suborder, which in turn resulted in older estimated ages of harvestman diversification. This work underscores that developmental vestiges in extant taxa can influence our understanding of character evolution, placement of fossils, and inference of divergence times.


Assuntos
Aracnídeos , Aranhas , Animais , Aracnídeos/genética , Fósseis , Filogenia , Fatores de Transcrição/metabolismo
2.
Curr Zool ; 65(5): 553-558, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31616486

RESUMO

Sexual differences in morphology can evolve by sexual selection and/or natural selection. In some species, only males have morphological structures that are used as weapons. Since some weapons may also be used for defensive purposes, males and females may behave differently towards predators. In some species of harvestmen (Arachnida and Opiliones), males have sharp apophyses ("spines") on their 4th pair of legs whereas females lack them. Those apophyses are used in male-male fights and in antipredatory behaviors. The harvestmen antipredatory repertory also encompasses passive defenses such as thanatosis (death feigning), retaliation (attack on predators), and chemical defense. Due to the sexual differences on weaponry, we hypothesized that males and females of Mischonyx cuspidatus (Gonyleptidae) rely on different defensive strategies. We experimentally induced males and females to perform 3 defensive behaviors: thanatosis, pinching with legs, and chemical release. We predicted that females would engage more in passive and chemical defenses than males, whereas males would rely more on retaliation than females. As expected, females performed thanatosis more often than males. Likewise, males performed retaliation more often than females. We did not find differences in the rate of chemical defense use between the sexes. This study provides evidence that due to sexual dimorphism, alternative antipredatory behaviors may have been selected in the different sexes in M. cuspidatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...